A pH-indicator-based screen for hydrolytic haloalkane dehalogenase.

نویسنده

  • Huimin Zhao
چکیده

1. Introduction Microbial hydrolytic haloalkane dehalogenases catalyze the cleavage of halogen-carbon bonds of a variety of aliphatic halogenated compounds, including a broad range of chlorinated (C 2 –C 6) and brominated (C 2 –C 8) alkanes, with water as the sole co-substrate, resulting in the production of halide ions, protons, and alcohols (1,2). Based primarily on substrate specificity and sequence homology, these enzymes have been classified into two general classes that are represented by the enzymes from Xanthobacter autotrophicus GJ10 and Rhodococcus rhodochrous (3). The study of these enzymes has been motivated largely by their potential use in waste treatment, bioremediation and industrial biocatalysis (4,5). A substantial amount of mechanistic and structural information is available for these enzymes (6–9). The haloalkane dehalogenase from Rhodococcus rhodochrous (RrDHL) is of particular interest because it is capable of selectively converting several industrially important commodity chemicals, including 1,2-dichloropropane (DCP), 1,2,3-trichloropropane (TCP), and 1,2-dichlorobutane (DCB), into more valuable chlorohydrins. Traditional chemical catalysts cannot do this. These chemicals are generated at a scale of several hundred million pounds per year as side products in the existing manufacturing processes of propylene oxide, epichlorohydrin, and butylene oxide, and are presently incinerated at a cost. Thus, developing RrDHL-based biocatalytic processes to recover value from these chloroalkanes represents an important environmental and process opportunity (4). Unfortunately, as a practical biocatalyst, this RrDHL enzyme suffers from low activity and low stability under the industrial process conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regio- and Enantioselective Sequential Dehalogenation of rac-1,3-Dibromobutane by Haloalkane Dehalogenase LinB.

The hydrolytic dehalogenation of rac-1,3-dibromobutane catalyzed by the haloalkane dehalogenase LinB from Sphingobium japonicum UT26 proceeds in a sequential fashion: initial formation of intermediate haloalcohols followed by a second hydrolytic step to produce the final diol. Detailed investigation of the course of the reaction revealed favored nucleophilic displacement of the sec-halogen in t...

متن کامل

Cloning and expression of the haloalkane dehalogenase gene dhmA from Mycobacterium avium N85 and preliminary characterization of DhmA.

Haloalkane dehalogenases are microbial enzymes that catalyze cleavage of the carbon-halogen bond by a hydrolytic mechanism. Until recently, these enzymes have been isolated only from bacteria living in contaminated environments. In this report we describe cloning of the dehalogenase gene dhmA from Mycobacterium avium subsp. avium N85 isolated from swine mesenteric lymph nodes. The dhmA gene has...

متن کامل

Degradation of 1,3-dichloropropene by pseudomonas cichorii 170.

The gram-negative bacterium Pseudomonas cichorii 170, isolated from soil that was repeatedly treated with the nematocide 1, 3-dichloropropene, could utilize low concentrations of 1, 3-dichloropropene as a sole carbon and energy source. Strain 170 was also able to grow on 3-chloroallyl alcohol, 3-chloroacrylic acid, and several 1-halo-n-alkanes. This organism produced at least three different de...

متن کامل

Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases.

Haloalkane dehalogenases are enzymes that catalyze the cleavage of the carbon-halogen bond by a hydrolytic mechanism. Genomes of Mycobacterium tuberculosis and M. bovis contain at least two open reading frames coding for the polypeptides showing a high sequence similarity with biochemically characterized haloalkane dehalogenases. We describe here the cloning of the haloalkane dehalogenase genes...

متن کامل

Crystallographic analysis of 1,2,3-trichloropropane biodegradation by the haloalkane dehalogenase DhaA31.

Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon-halogen bonds, which is a key step in the aerobic mineralization of many environmental pollutants. One important pollutant is the toxic and anthropogenic compound 1,2,3-trichloropropane (TCP). Rational design was combined with saturation mutagenesis to obtain the haloalkane dehalogenase variant DhaA31, which displays an increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Methods in molecular biology

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2003